37 research outputs found

    Modeling instrumental field-dependent aberrations in the NIRC2 instrument on the Keck II telescope

    Get PDF
    We present a model of field-dependent aberrations arising in the NIRC2 instrument on the W. M. Keck II telescope. We use high signal-to-noise phase diversity data employing a source in the Nasmyth focal plane to construct a model of the optical path difference as a function of field position and wavelength. With a differential wavefront error of up to 190 nm, this effect is one of the main sources of astrometric and photometric measurement uncertainties. Our tests of temporal stability show sufficient reliability for our measurements over a 20-month period at the field extrema. Additionally, while chromaticity exists, applying a correction for field-dependent aberrations provides overall improvement compared to the existing aberrations present across the field of view

    Liger for Next Generation Keck Adaptive Optics: Opto-Mechanical Dewar for Imaging Camera and Slicer

    Full text link
    Liger is a next generation adaptive optics (AO) fed integral field spectrograph (IFS) and imager for the W. M. Keck Observatory. This new instrument is being designed to take advantage of the upgraded AO system provided by Keck All-Sky Precision Adaptive-optics (KAPA). Liger will provide higher spectral resolving power (R∼\sim4,000-10,000), wider wavelength coverage (∼\sim0.8-2.4 μ\mum), and larger fields of view than any current IFS. We present the design and analysis for a custom-made dewar chamber for characterizing the Liger opto-mechanical system. This dewar chamber is designed to test and assemble the Liger imaging camera and slicer IFS components while being adaptable for future experiments. The vacuum chamber will operate below 10−510^{-5} Torr with a cold shield that will be kept below 90 K. The dewar test chamber will be mounted to an optical vibration isolation platform and further isolated from the cryogenic and vacuum systems with bellows. The cold head and vacuums will be mounted to a custom cart that will also house the electronics and computer that interface with the experiment. This test chamber will provide an efficient means of calibrating and characterizing the Liger instrument and performing future experiments.Comment: 8 pages, 6 figure

    MAGIQ at the W. M. Keck Observatory: initial deployment of a new acquisition, guiding, and image quality monitoring system

    Get PDF
    The W. M. Keck Observatory has completed the development and initial deployment of MAGIQ, the Multi-function Acquisition, Guiding and Image Quality monitoring system. MAGIQ is an integrated system for acquisition, guiding and image quality measurement for the Keck telescopes. This system replaces the acquisition and guiding hardware and software for existing instruments at the Observatory and is now the standard for visible wavelength band acquisition cameras for future instrumentation. In this paper we report on the final design and implementation of this new system, which includes three major components: a visible wavelength band acquisition camera, image quality measurement capability, and software for acquisition, guiding and image quality monitoring. The overall performance is described, as well as the details of our approach to integrating low order wavefront sensing capability in order to provide closed loop control of telescope focus

    Analyzing long-term performance of the Keck-II adaptive optics system

    Get PDF
    We present an analysis of the long-term performance of the W. M. Keck Observatory Laser Guide Star Adaptive Optics (LGS-AO) system and explore factors that influence the overall AO performance most strongly. Astronomical surveys can take years or decades to finish, so it is worthwhile to characterize the AO performance on such timescales in order to better understand future results. Keck Observatory has two of the longest-running LGS-AO systems in use today and represents an excellent test-bed for investigating large amounts of AO data. Here, we use LGS-AO observations of the Galactic Center (GC) from 2005 to 2019, all taken with the NIRC2 instrument on the Keck-II telescope, for our analysis. We combine image metrics with AO telemetry files, MASS/DIMM turbulence profiles, seeing information, and weather data in one cohesive dataset to highlight areas of potential performance improvement and train a simple machine learning algorithm to predict the delivered image quality given current atmospheric conditions. The complete dataset will be released to the public as a resource for testing new predictive control and PSF-reconstruction algorithms

    Update on the Preliminary Design of SCALES: the Santa Cruz Array of Lenslets for Exoplanet Spectroscopy

    Get PDF
    SCALES (Santa Cruz Array of Lenslets for Exoplanet Spectroscopy) is a 2-5 micron high-contrast lenslet integral-field spectrograph (IFS) driven by exoplanet characterization science requirements and will operate at W. M. Keck Observatory. Its fully cryogenic optical train uses a custom silicon lenslet array, selectable coronagraphs, and dispersive prisms to carry out integral field spectroscopy over a 2.2 arcsec field of view at Keck with low (<300<300) spectral resolution. A small, dedicated section of the lenslet array feeds an image slicer module that allows for medium spectral resolution (5000−100005000-10 000), which has not been available at the diffraction limit with a coronagraphic instrument before. Unlike previous IFS exoplanet instruments, SCALES is capable of characterizing cold exoplanet and brown dwarf atmospheres (<600<600 K) at bandpasses where these bodies emit most of their radiation while capturing relevant molecular spectral features.Comment: 24 pages, 13 figures, SPIE Astronomical Instruments and Telescopes 2020 conferenc
    corecore